-
h ;
/ e
,Q ¥
AR

Y

A NEURAL NETWORK AERO DESIGN SYSTEM
FOR ADVANCED TURBO-ENGINES

Jose M. Sanz
National Aeronautics and Space Administration
Glenn Research Center
Lewis Field
Cleveland, Ohio 44135

Abstract

An inverse design method calculates the
blade shape that produces a prescribed input pres-
sure distribution. By controlling this input pressure
distribution the aerodynamic design objectives can
easily be met. Because of the intrinsic relationship
between pressure distribution and airfoil physical
properties, a neural network can be trained to
choose the optimal pressure distribution that would
meet a set of physical requirements. The neural
network technique works well not only as an inter-
polating device but aiso as an extrapolating device
to achieve blade designs from a given database.
Two validating test cases are discussed.

Introduct

Neural network systems have been
attempted in the context of direct design methods
of turbomachinery blading, References 1 and 2.
From flow properties ascribed to a set of blades,
the neural network is trained to infer the properties
of an ‘interpolated’ blade shape. The difficulty with
this approach is that in transonic regimes where we
deal with intrinsically non-linear and ill-posed prob-
lems, small perturbations of the blade shape can
produce very large variations of the flow parame-
ters, i.e. the actual properties of the ‘interpolated
blade’' can be very different from the intended. It is
very unlikely that, under these circumstances, a
neural network will be able to find the proper solu-
tion.

The unique situation in the present method is
that the neural network can be trained to create the
required input pressure distribution from a data-
base of pressure distributions. An inverse method,
Reference 3 and references therein, will compute
the exact blade shape that corresponds to this
‘interpolated’ input pressure distribution. In other

words, the interpolation process is transferred to a
smoother problem, namely, finding a pressure dis-
tribution that would produce the required flow con-
ditions. Once this is done, the inverse method finds
the exact flow solution and corresponding blade
shape.

The neural net acts as a versatile interpolation
procedure. Once a database of pressure distribu-
tion and corresponding blade shape has been con-
structed, the neural net is trained according to
certain rules. Each element (neuron) of the neural
net is an operator ascribed with a weight and a
bias. The training procedure consists of determin-
ing those weights and biases. Essentially, the pro-
cess determines the relative weight for each
element and how each weighted element influ-
ences and biases the system. A multilayered net-
work is used to train the system for pattern
association and classification. The training of the
neural net system is unique to a given database,
i.e., the system has to be retrained whenever the
database is modified.

The implementation of the neural network is
better achieved by adopting an object oriented par-
adigm that allows a more rational communication
between the different modules involved in the
design process. Under this paradigm, objects
(blades) have properties assigned on which the
neural network can act. The object oriented JAVA
language has proven to be an excellent tool to
write the neural net modules. Fortran modules are
being embedded in a program interface that allows
the execution on a central computer server and a
graphical interface from any remote client.

The resulting system is a design procedure
capable of a fast and automated way of producing
the required blade designs from a given numerical
database. The neural network is not only very effi-
cient as an interpolating tool but seems to be capa-
ble of extrapolating results beyond the given
database.

In this paper, the reader is led through the
concept, training, use and testing of neural network
methodology. The methodology is validated by
analyzing two test cases.

Impact on the design cycle

The use of neural networks is, in this context,
highly related to the use of proper optimization
techniques. Optimization is used essentially as an
automation procedure to force the input pressure
distributions to achieve the required aero and
structural design parameters. The automation and
versatility of the procedure enables the design of
an optimal mutistage aerc configuration at prelimi-
nary design time by incorporating the actual blade
geometries, rather than using a 'no blade’ model,
from the start of the design cycle.

In a typical design cycle, see Figure 1, the
meanline and blade geometry calculations are
reached at two quite different steps, and most com-
monly by two different groups of designers. The
stream annulus shape, together with the hub to tip
flow conditions, is the output of the meanline
design in which the blade geometry designer is
required to match the prescribed flow conditions.
On the other hand, this stream annulus was deter-
mined with the assumption, backed by the designer
database, that a blade geometry will fit in. Com-
monly, this stream annulus shape has been ‘cast’
by the time the blade designer receives it and very
rarely will be modified. Even in very advanced
designs, it is possible to find cases where an extra
row of vanes has been included to resolve the
peculiarities of a predetermined stream annulus
geometry. The need for this row of vanes could
have been eliminated with a more synergistic
design process.

The neural net system will attempt to integrate
these two steps into a single procedure which will
optimize the stream-annulus/blade-shape design
process. The inverse design code can produce,
with the present computational capabilities, a blade
cross section in one second of CPU time for a
given pressure distribution. This blade shape can-
didate will guarantee shock free, non separated
flow at the design point and will supply the design
point loss. This information is supplied back to the
meanline code to optimize the stream tube shape.
The neural network chooses at each step the

¥

Cycle
Meanline
* Neural
Net

Blade Geometry

Y

Viscous Analysis

L ¥

Design Cycle
Figure 1.

proper pressure distribution to feed into the inverse
design code.

A static deflection analysis and a natural fre-
quency vibration analysis are used to thin out aero-
dynamic shapes that cannot be accepted from a
structural point of view and to serve as a first itera-
tion of the multidisciplinary design cycle.

The appealing natural extension of this work is
to merge cycle and viscous analyses into the
present process. A powerful cluster of today’s
workstations makes possible the timely production
of an off-design blade map that can be fed back
into the design cycle. The hurdle to overcome is
not CPU time, but synergy and format compatibility.

The neural network concept

A neural network, as an emulation of its bio-
logical counterpart, consists of a multilayered array
of simple computational elements called neurons.
A neuron receives a set of input values, multiplies
each by a weight factor and adds a bias to form a
net input which is supplied to a transfer operator
yielding an output value. If p and w are r-dimen-
sional input and weight vectors, respectively, and b
is a scalar bias, the transfer operator F produces a
scalar output:

a=F(w-p+b)

The multiple inputs are weighted in a similar
manner to the way the dendrites condition the dif-
ferent electrochemical inputs in a biological neu-

ron. The bias can be considered a weight for a
constant input of 1. The transfer function trans-

forms the net input n = w - p + b into the
output element, as the axon does in its biological
equivalent.

The transfer function most commonly used is
the Heaviside (step) function. A fixed response is
obtained if the net input surpasses a given thresh-
old. A neuron with this transfer function is called a
perceptron. It very much resembles the dynamics
of the biological neuron, and is useful for data clas-
sification.

The Heaviside function is not differentiable but
can be replaced by a differentiable function with
similar properties. The sigmoid function

c=1/(1+e)

can be used to produce similar results after a tran-
sient, differentiable, period. Other transfer func-
tions commonly wused are the arctanh,
trigonometric functions in general, a Gauss (error)
function as well as linear functions. Figure 2 repre-
sents a schematic of a neuron.

pcy o M
P(2) o \

a
: F
pr) o WO |y

P »n=w-p+b -» F(n)

Schematic of a Neuron

Figure 2.

An r-input neuron is uniquely determined by r
weights, one bias and a transfer function acting on
the net input n and yielding one single output
value.

Assume now that the same r-input vector is

presented to a fayer of s neurons with the same or
different transfer functions. The relationship

p—on=w-p+b—oa=F(n)

establishes a new matrix equation, where p is an r-
column vector, w is an (s,r) matrix and b and a are
now s- column vectors. The neuron layer takes r
input values and transforms them into s output val-
ues. It has r times s weights and s biases to be
determined for s given transfer functions.The type
of problem will determine the number of layers and
transfer function. In the JAVA programing lan-
guage, in which the neural net has been pro-
gramed, transfer functions can be added very
easily as new methods to the class of neurons.

Similarly the output s-dimensional vector of an
s-neuron layer can be fed to a new s-input layer
with, say, s2 neurons to produce an s2-dimensional
output vector.

Although a single neuron can not do much,
the combination of layers of neurons is a very pow-
erful tool. The combination of a sigmoid function
layer feeding into a linear layer can approximate
almost any function with an arbitrary number of dis-
continuities and without showing a Gibbs (over-
shooting) phenomenon.

Once a neural net has been established by
determining a sequence of layers and choosing the
transfer functions and dimensions of each layer (r-
inputs into s-neurons) the process of determining
the weights and biases can start. This process is
called the training of the neural net, and is unique
to every database on which the net is going to act.

Training the neural network

Assume we a have a mulitilayered net with an
r-dimensional input vector feeding the first layer,
some intermediate layers with an arbitrary number
of neurons always equal to the number of inputs for
the next layer, and a final s-dimensional output vec-
tor. We would like to establish a one-to-one rela-
tionship between q training vectors of length r and
q farget vectors of length s. In other words, we
want the neural network to associate, in a one to
one manner, the properties of each one of the q r-
input vectors to each of the q s-output vectors. If
the neural net ‘learns’ that the target vectors con-
tain the properties that we associate with the train-
ing inputs, a new input vector will be associated

with an output vector whose properties will follow a
similar pattern.

The neural net can be seen, essentially, as an
interpolation procedure which is carried out in a
very versatile manner. In the elementary case of a
single linear neuron, if we choose the number of
training vectors q to be equal to r+1 (q constraints,
r+1 degrees of freedom) the problem would be fully
determined (provided that the vectors are linearly
independent) and a linear solver would suffice as
training.

To train a general neural network we adopt the
following method, known as the Widrow-Hoff tech-
nique, Reference. 6. For a given set of weights w
and biases b, let p be an input vector and a =
F(w.p+b) its corresponding output vector. If tis the
target vector of p for each of the q training vectors,
we want to find the weights and biases that mini-
mize the sum of the squared errors, for the error
vector e = t-a

q
lel? = 3 (1(k) - a(k))’

k=1

A gradient steepest descent method can be
used to solve this problem. By incorporating the
biases into the weights matrix and augmenting the
inputs p with a row of 1, the Lagrangian derivatives

d 2, _ 0 ,, i 2
5‘%("3") = a_w_,.j(t" F (W,'jpj))
dF’

can be obtained for each weight.
The weights matrix can then be incremented
in the opposite direction of the increasing errors

Aw= xe(ilz . transp(p))
dn

with A being a positive adjustable parameter. A
back propagation process is used for a multilay-
ered network by finding first the weights of the last
layer and working back towards the first layer. The

method guarantees only local rather than global
error minimum. The number of neurons in the inter-
mediate layers is at our disposal and can be modi-
fied if the error achieved is not satisfactory.

A neural net for the inverse design system

The inverse design method solves the prob-
lem of finding a blade shape with a prescribed sur-
face pressure distribution. For the problem to be
uniquely determined, three additional constants
related to the iniet Mach No., inlet air angle and
cascade solidity have to be prescribed. These
three constants together with a B-spline represen-
tation of the surface pressure distribution form the
core input for the inverse method. An automated
Newton algorithm acts on this core inputto achieve
the design objective vector

[M17 Bl) AB’ 07 The]

formed by the target inlet Mach number, inlet air
angle, air flow turning, solidity and trailing edge
thickness. The trailing edge thickness is included
as part of the objective vector due to the large
impact that it can have over the (finite) trailing edge
speed.

An existing database of inverse design
blades, comprising approximately one hundred test
cases, contains the core inputs with their corre-
sponding objective vectors, blade geometries and
associate flow properties. The task at hand is to
train the neural net using this database. Figure 3 is
a sketch of the neural net flow process. The output
of the neural net then provides a pressure distribu-
tion for the inverse design method. The inverse
design method will then generate the blade geom-

etry.

The coefficients of the B-spline representation
for the pressure distribution contain a wealth of
information about the flow characteristics of the
associated blade. The distinguishing characteristic
of the inverse method is that the variation of these
coefficients acts almost linearly on the flow proper-
ties of the blade. For instance, controlling the B-
spline coefficient that sets the slope of the pres-
sure distribution at the stagnation point of a turbine
blade, which directly relates to the leading edge
curvature of the airfoil, can, almost linearly, modify

Target

[M]s B]y AB9 G, The]

Core Input

~

Neural Net

Inverse Desigk

Geometry

Inverse Design Neural Net

Figure 3.

the aft-loading characteristic of that blade. Each
pressure distribution B-spline can, in most cases, be
represented by six control points on each side with
a fourth order spline. The size of the database file is
less than 200 kilobytes.

The variation of a single parameter is seen to
have a direct impact on the blade performance. We
want the neural net to learn that this leading edge
stagnation point siope coefficient has a given influ-
ence on the aft-loading of the blade, and compares
it to the impact that its modification will have on the
overall loading of the blade. The coefficients that
control the overall loading (sustained area) will be
influenced by the necessary modifications since one
target to be met is the flow turning angle.

A neural net formed by a sigmoid layer and a
linear layer has been trained to produce the core
input data for a required objective vector. The result-
ing neural net, because of the good approximating
properties of the combination sigmoid-linear layer,
seems to be sufficient for the purpose of picking up
proper input pressure distributions for the inverse
design code. More layers will probably be necessary
to address other types of problems related to overall
performance of engine components in which more
complex dependencies are to be explored.

Testing the neural net

Two experiments have been carried out to test -
the neural net system. The first experiment was to
produce new designs whose objective vectors fall
fully within the design database envelope. The new
designs conform naturally to the database. I the
pressure distributions for the database elements
surrounding the objective vector are of a flat top’
type, the new pressure distribution inherits this
property. Similarly, behavior at the leading edge is
inherited from neighboring cases. In essence, the
quality and characteristics of the new blade design
are determined by the database characteristics.

The Icing Research Tunnel Heat Exchanger
Modification Project required the design of new turn-
ing vanes at the corners No. 3 and 4 of this wind
tunnel to accommodate the change in cross section
area imposed by the new heat exchanger. The neu-
ral net was able to pick up an alternative solution to
the standard one being proposed. The experimental
results, Reference 7, confirm the quality of the
design. Besides being far more efficient, which will
largely improve the flow quality of the wind tunnel,
these turning vanes have produced a substantial
manufacturing saving because approximately only
half the vanes are needed. Besides, due to their
characteristic thickness, the new vanes have been
manufactured out of fiber glass rather than steel.
Operational and maintenance costs will be also low-
ered by incorporating this design.

Obviously this type of design could have been
achieved without the neural net, but now the system
finds the solution in an automated way, in a matter
of minutes, rather than having to tailor a specific
pressure distribution for that particular case. If the
problem at hand is the design of a compressor
stage including its stream tube, new blade shapes
corresponding to changing flow conditions can be
automatically generated, adding a whole new oper-
ational mode to the blade design process.

The inverse design database contains a num-
ber of cases that demonstrate the capability of the
method to produce very unique designs. The sec-
ond type of experiment was devised to see if, by
suppressing some of the more unique data sets
from the database and training the neural net with-
out them, the system would be capable of reproduc-
ing those cases.

The first case, Figure 4 is a staggered cascade
of turning vanes with near zero lift and a working
range of inlet air angle of near 60 degrees, Refer-
ence 4.

| | I l |

i 20 40 80 80
Chard, percent

Upper surface

Lower surface

i
Iﬂ———éhord—-

NASA Ames Wind Tunnel Turning Vanes

Figure 4.

The neural net system is confronted with find-
ing an airfoil that is not symmetric, but has near
zero lift. It generates a pressure distribution that
inherits the needed properties from neighboring
blades. The inverse design method finds an airfoil
that is strikingly similar to the original design for the
NASA Ames 40X80X120 wind tunnel that has
been suppressed from the database. Because this
was a two point design, the design inlet air angle
was set to minus 16 degrees and the turning to
nine degrees to accommodate the stagger angle at
both operating conditions.

The second case of this experiment was to try
to reproduce a turbine blade design with 160
degrees of flow turning originally designed for the
Advanced Turbopump Turbine of the Space Shutle
Main Engine, Reference 5. Such a degree of turn-
ing did not exist in the industry database at the
time of the design, and as a matter of fact, the liter-
ature does not indicate that it has ever been repro-
duced. A turbine blade with a 100 degrees of
turning was considered a very high turning blade.

The implication of this test case was to see if
the neural net is capable of extrapolation as well as
interpolation. By suppressing from the database
this blade with 160 degrees of turning, the objec-
tive vector is now completely outside the database.

No neighboring cases exist that can interpolate the
needed conditions. Still the neural net finds that to
meet the turning demands it has to flatten the pres-
sure distribution to maximize the sustained area
and again finds a solution which is very close to the
original design. Figure 5, shows the original design
of the Advanced Turbopump Turbine.

Design parameters
10 | Mach number Rotor
distribution
3 -
6 = 7
Mach 4 N
2
0 S
-2

Advanced Turbopump Turbine

Figure 5.

This original design has a specific wedge
angle requirement at the trailing edge. The neural
net does not find the same wedge angle because
this is an external requirement not included in the
database and there are no neighboring cases in
the database to influence the design. The input
pressure distribution found by the neural net has to
be manually changed and a few more iterations of
the design code are necessary to match the origi-
nal design. Figure 6 shows the design that the neu-
ral net finds before adjusting for the imposed
wedge angle. The new pressure distribution is
somewhat different to the original because of this
extra condition, but both meet the design objective
equally well.

Conclusion

A neural network has been designed and

1

0.9

-]

0.7

0.8

0.5

0.4

lllllllllll lll]lll'lli]rlllll

0.3
02

0.1 fF

0'|1|||11|1111|111A|1
0 025 0.5 0.75

Inlet Mach No. 0.549 Pitch 0.742
Inlet Air Ang. 80.02 Axl Pitch 1.080
Exit Mack No. 0.633 Max Thck 0.751
Exit Air Ang. -80.10 T.E.Thck 0.010
Turning 160.12 D.T.E. 0.000

Figure 6

implemented as a complementary tool for the
design of turbomachinery blading. The initial exper-
imentation with the system indicates that, indeed,
the neural net can learn association and pattern
behavior. The system offers to automate the blade
design process to an extent that blade geometries,
with their particular performance, can be incorpo-
rated very early in the design process. The experi-
ments seem to indicate that the neural net is not
only a good interpolating tool for the design within
the current database but also a good extrapolating
tool for the design outside this database.

References

1. M.M. Rai and N.K. Madavan”Application of
Artificial Neural Networks to the design of Turbo-
machinery Airfoils. 36th Aerospace Sciences Meet-
ing and Exhibit. Jan 12-15, 1998. Paper # AlAA 98-
1003.

2. H. Lee, S. Goel, S.S. Tong, B. Gregory and
S. Hunter’Towards Modeling the Concurrent
Design of Aircraft Engine Turbines™ ASME Paper
93-GT-1993.

3. J.M. Sanz. “Automated Design of Con-
trolled Diffusion Blades”. Journal of Turbomachin-
ery, Vol. 110, October 1988. pp 540-544.

4.J.M. Sanz et al. “Design and Performance of
a Fixed, Non-Accelerating, Guide Vanes Cascade
that Operates Over an Inlet Flow angle Range of
60 Degrees.” Journal for Gas Turbines and Power,
Vol. 107 NO.2, April 1985, pp 247-254.

5. JM. Sanz. “On the Impact of Inverse
Design Methods to Enlarge the Aero Design Enve-
lope for Advanced Turbo-Engines.” Proceedings of
the Sixth International Symposium on Computa-
tional Fluid Dynamics, Sept. 1995, Val lll, pp. 1044-
1051.

6.Introduction to the Theory of Neural Compu-
tation. J. Hertz, A. Krogh and R. Palmer. Addison-
Wesley, 1995.

7. V. A. Canacci et al. “Flow quality Studies of
the Scale Model Icing Research Tunnel and Pro-
jections to the Full-Scale Modified IRT.” 37th Aero-
space Sciences Meeting & Exhibit. AIAA-99-0307.

